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I n  the present study, it is shown that the spreading rate of a mixing layer can be 
greatly manipulated a t  very low forcing level if the mixing layer is perturbed near a 
subharmonic of the most-amplified frequency. The subharmonic forcing technique 
is able to make several vortices merge simultaneously and hence increases the spread- 
ing rate dramatically. A new mechanism, ‘collective interaction ’, was found which 
can bypass the sequential stages of vortex merging and make a large number of vortices 
(ten or more) coalesce. 

A deeper physical insight into the evolution of the coherent structures is revealed 
through the investigation of a forced mixing layer. The stability and the forcing 
function play important roles in determining the initial formation of the vortices. The 
subharmonic starts to  amplify a t  the location where the phase speed of the sub- 
harmonic matches that of the fundamental. The position where vortices are seen to 
align vertically coincides with the position where the measured subharmonic reaches 
its peak. This location is defined as the merging location, and i t  can be determined 
from the feedback equation (Ho & Nosseir 1981). 

The spreading rate and the velocity profiles of the forced mixing layer are distinctiy 
different from the unforced case. The data show that the initial condition has a long- 
lasting effect on the development of the mixing layer. 

1. Introduction 
During the past decade, two important experiments have made major advances in 

the understanding of mixing layers. Within a wide range of Reynolds numbers, 
Brown & Roshko (1974) concluded that the large coherent vortical structures are the 
intrinsic features of a turbulent mixing layer. At about the same time, Winant & 
Browand ( 1  974) showed that the growth of a mixing layer is governed by the pairing 
mechanism of these vortical structures. These two concepts, together with the observa- 
tion of coherent structures in turbulent boundary layers (Kim, Kline & Reynolds 
197 l ) ,  changed the trend of thought about turbulence. Turbulence was always thought 
to be a random flow field which could be treated by a stochastic approach. After 
recognition of the dominant role of the coherent structures in a shear layer, it became 
evident that the traditional stochastic methods, either experimental techniques or 
theoretical analyses, were not capable of revealing completely the characteristics of 
the quasi-ordered coherent structures. 

Kovasznay, Kibens & Blackwelder (1970) developed the concept of conditional 
sampling, which can distinguish and measure flow regions with different characteris- 
tics, e.g. turbulent and non-turbulent, from a predetermined threshold. This technique 
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provides a powerful tool for studying the coherent structures. Wygnanski & Fiedler 
(1970) explored in detail the flow properties in the turbulent zone of a mixing layer. 
Browand & Weidman (1976) used the amplitude and the phase measured from two 
hot-film probes as the threshold, and conditionally sampled the vortices undergoing 
a pairing process. They found that the pairing process was responsible for the trans- 
verse momentum transport, i.e. production of the Reynolds stress. 

The concept of coherent structures poses a problem to the theoreticians, because it 
is difficult t o  model quasi-ordered structures, which are neither deterministic nor 
stochastic. Recently, the direct simulation of coherent structures has shown promising 
results with the development of fast numerical schemes. Corcos & Sherman (1976) 
examined the roll-up of a shear layer into a vortex. Acton (1976) used discrete vortex 
elements in modelling the shear layer, and investigated the pairing of coherent 
structures. Ashurst (1976) employed discrete vortices to study the mixing in a free 
shear layer. Knight (1979) studied the relationship between the fine-scale turbulence 
and the coherent structures. Riley & Metcalfe (1980) used a pseudo-spectral method 
to solve the Navier-Stokes equation in a mixing layer. They supplied very valuable 
information about the mixing layer, and could simulate the vortex-merging pheno- 
menon found by Ho and Huang (1978). 

The other approach is to study the free shear layer from a stability point of view. 
Michalke (1965) calculated the spatial stability of a parallel shear layer. His results 
indicate that the most amplified frequency and the amplification rate of the instability 
waves scale with the momentum thickness and the mean velocity. Kelly (1967) pro- 
posed a subharmonic-resonance mechanism that can feed energy to the subharmonics. 
It has been shown that the far-field noise radiation can be predicted by using a wave- 
like approach (Tam 1971; Merkine & Liu 1975). One should be cautious in using these 
results to explain the formation or the merging of coherent structures. The stability 
analyses are linear or weakly nonlinear calculations, whereas the evolution of coherent 
structures is well into the nonlinear regime. This point will be elaborated further in this 
paper. 

Mixing layers are important in many practical applications, e.g. combustion, 
chemical lasers. Enhancement of the mixing of two fluids in the two streams can be 
very helpful in these applications. The coherent structures have been said to engulf 
fluid into the mixing layer. Large strain rates occur during the pairing process and the 
interface between the two fluids is increased. A greater interfacial area provides an 
increased molecular mixing. Hence mixing in a shear layer can be improved if the 
amalgamation of coherent structures can be promoted. 

In the present paper, first, the visualization experiment is used to illustrate the 
novel subharmonic forcing method by which the number of coherent structures 
involved in each merging can be controlled. Afterwards, the relationship between the 
stability and the initial development of the coherent structures is identified. The roles 
of feedback and subharmonic resonance in vortex merging are examined. Finally, the 
downstream development of the mixing layer is surveyed. 



Subharmonics and vortex merging in mixing layers 445 

Upstream 
reservoirs 

Flowmeters 

Downstream 
reservoirs 

I m y  
0 

u1 - 
FIGURE 1. Experimental facilities. 

2. Experimental facilities 
The experiment was performed in a water channel (figure 1).  The stagnation cham- 

ber is separated into two compartments by a splitter plate. The test section is connected 
to the stagnation chamber through a 9: 1 contraction. The splitter plate ends with a 
sharp edge at the beginning of the test section. On the low-speed side of the contrac- 
tion, a 60-mesh screen is placed about 3 mm in front of the trailing edge of the splitter 
plate such that the thickness of the boundary layer can be very much reduced. The 
wake, due to the two boundary layers, disappears a t  1.5 em. The cross-section of the 
test section is 10 x 10 cm and the length is 180 cm. Water is gravity-fed into the 
stagnation chamber from four upstream reservoirs. Four supply pipes connect the 
reservoirs to the stagnation chamber. The flow rates are controlled by four flowmeters 
(Fisher-Porter Type 10A3565AY). Two of the pipes have steady flows. Two butterfly 
valves are installed in the other two pipelines to  provide velocity perturbations. The 
blades of the two valves are set 90' out of phase. The butterfly valves are driven by a 
DC motor. The amplitude and the frequency of the velocity perturbations can be 
varied by the combination of the flowmeters and the DC motor. Water is collected 
a t  the end of the test section and pumped back into the upstream reservoirs. 

The velocity field is surveyed by hot-film probes (TSI Type 1210). The probes are 
mounted on a traverse with two degrees of freedom. The hot-film outputs are recorded 
on an analog tape recorder (Hewlett Packard Type 1040A) with frequency response 
up to 5 kHz. Signals are digitized and processed with a PDP 11/55 minicomputer. 

The mixing layer is visualized with common food colouring injected on the surface 
of the splitter plate about 3 em before the trailing edge on the low-speed side. 

The origin of the Cartesian co-ordinates is located a t  the trailing edge of the splitter 
plate. The streamwise direction is the x-axis, and the vertical direction is the y-axis. 

15-2 
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FIGURE 2. The response frequency 'us. the forcing frequency. 

3. Experimental results 
3.1. Visualization of the forced mixing layer 

3.1.1. Response of a mixing layer under forcing. In  most of the test cases, the high- 
speed side of the mixing layer was kept a t  U, = 9.5 cm/s, and the low speed was 
U, = 5.0 cm/s. The vortices usually formed aperiodically in an unforced mixing layer, 
but there was a peak in the spectrum of streamwise velocity fluctuations. This peak 
frequency, referred to as the most-probable frequency fm, was found to be 5.06 Hz, 
and close to the theoretical most-amplified frequency, designated by fo (see $3.2.1). 

Forcing was provided by perturbing the flow rates of both streams of the mixing 
layer. Upstream of the trailing edge of the splitter plate, the velocity perturbations 
were in the streamwise direction only. Downstream of the trailing edge, transverse 
velocity perturbations appeared along with the streamwise velocity perturbations, 
because the curvature of the stagnation streamline must vary in time in order to 
accommodate the condition of continuity of pressure across the mixing layer. When 
the mixing layer is periodically forced, coherent structures develop periodically 
owing to the streamwise and transverse velocity perturbations. 

The forcing frequency ff was varied from 6-35 to 0.85 Hz, covering a range 
from somewhat higher than f m  to much lower than fm. It was interesting to find that 
the instability frequencies (in the initial region) of the forced mixing layer were not 
necessarily the same frequency as ff. The initially most-amplified instability frequency 
of the forced mixing layer was called the response frequency fr, and was determined 
both by visualizing the passage of the vortices and by hot-film measurements 4 cm 
downstream from the trailing edge and upstream from any merging. The relationship 
between the response frequency and the forcing frequency is plotted in figure 2. The 
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FIGURE 3. Mixing layer under mode I forcing; fr/fm = 0.70, A$ = 120". 

results indicate that the vortices do not always form a t  the most-probable frequency 
f m. When the forcing frequency is close to f the response frequency is the same as the 
forcing frequency. If the forcing frequency is below a certain limit the response fre- 
quency switches discontinuously to a higher frequency. I n  the present experiment, 
four frequency stages and discontinuities were found with decreasing forcing fre- 
quency. The frequency stages are designated as modes I, 11, 111, IV. Hysteresis is 
observed between stages. 

3.1.2. Vortex merging and collective interaction. The evolution of the shear layer mas 
visualized with a dye trace emerging from the trailing edge. When the mixing layer is 
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FIGURE 4. Mixing layer under mode I1 forcing;f,/f, = 0.32, A# = 51.4". 

FIGURE 5 .  Mixing layer under mode I1 forcing; ff/f,,, = 0.47. 

not forced, the vortices merge randomly in time and in space. The position of the first 
vortex pairing can be observed at  about 15 cm downstream from the trailing edge 
of the splitter plate. If outside forcing is applied, the location of vortex merging 
becomes localized. The mixing layer experiences changes when the flow parameters, 
mean shear, forcing frequency, forcing amplitude etc., vary. Visualization experiments 
were performed to  study the effect of each parameter while other parameters were 
held approximately constant. Among these parameters the forcing frequency was 
found to have the most pronounced effect on the mixing layer. The other parameters 
change the location of the vortex merging, but not the number of vortices in each 
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FIGURE 6. Mixing layer under mode I11 forcing; fJf, = 0.21, A$ = 51.4" 

merging (Ho & Zhang 1981). The effect of variable forcing frequency was studied most 
extensively. 

When the mixing layer is forced in the range of mode I, vortex merging is suppressed 
for quite a long distance (figure 3).  It is clear from the photograph that the suppression 
of vortex merging inhibits the spreading of the mixing layer. Ultimately, vortex 
merging resumes and the mixing layer grows further downstream as in the unforced 
mixing layer. Within the range of mode I, the wavelength at  the response frequency, 
A, = u/fr (where = &(U, + U2)) ,  decreases with increasing forcing frequency, and 
so does the size of the vortices. The thickness of the mixing layer can be inferred from 
the wavelength and the size of vortices. Therefore the thickness can be controlled by 
the forcing frequency. The thickness increases with decreasing forcing frequency until 
the response frequency switches to mode II .  I n  mode 11, every two vortices will merge 
a t  a fixed position. Photographs in figure 4 show the evolution of vortices a t  different 
phase angles q5 in a forcing cycle. (In figures 3-8 Aq5 is the phase difference between 
subsequent pictures.) The mixing layer spreads very quickly around the merging 
position in figure 4, but the thickness stays almost constant until further merging 
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FIGURE 7 .  Mixing layer under mode IV forcing; ff/fm = 0.17 ,  A$ = 51.4". 

takes place. Varying the forcing frequency within mode I1 also changes the size of the 
vortices; furthermore, the position of vortex merging moves upstream with increasing 
forcing frequency (figure 5). With further decrease of bhe forcing frequency, the res- 
ponse frequency will change to mode 111 (figure 6),  and every three vortices merge 
together. In  mode IV, the merging of four vortices is observed (figure 7) .  The spreading 
rate of the forced mixing layer correspondingly increases, and is much larger than 
that of the unforced mixing layer. In all the modes, i t  can be observed from these 
photographs (figures 4-8) that the temporal variation during one cycle of the mixing 
layer a t  a certain downstream location is much less pronounced compared with the 
spatial variation along the mixing layer a t  one instant. The phase difference between 
the forcing frequency and the response frequency, i.e. between the subharmonic and 
the fundamental, can also alter the merging pattern. I n  most of the mode 111 tests, 
two vortices merge first, and the new vortex merges with n third one. For some phase 
relationships, all three vortices will merge a t  the same time. In  mode IV, two vortices 
usually merge into a pair, and two pairs then form a single structure. Four vortices 
merging simultaneously can also be observed at  times. Occasionally, three vortices 
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FIGURE 8. Collective interaction;f,/f, = 0.1, A$ = 51.4". 

merging simultaneously can be found in an unforced mixing layer. Rockwell (1972) 
used an external oscillating plate to excite a plane jet. He observed three vortices 
involved in one merging process. Reynolds & Bouchard (1981) studied a forced 
axisymmetric jet. They also visualized large spreading of the jet when three vortices 
merge together. 

When the forcing frequency was further decreased and the r.m.s. forcing amplitude 
at the high-speed side was kept below 0.1 % of D, the mixing layer behaved like an 
unforced mixing layer. Well-organized vortex merging did not occur. A very different 
type of vortex merging was observed when a higher forcing amplitude level was 
applied (the necessity of high faxing level will be discussed in § 3.3.2). I n  this case, the 
vortices initially formed within a wide band near the most-probable passage frequency 
fm. The vortices were displaced laterally according to their position, i.e. phase angles, 
in the cycle of the high-amplitude and low-frequency forcing (figure 8). Owing to 
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mutual induction and the mean shear (Batchelor 1967) many vortices in one part of 
the forcing cycle undergo a merging process and form a, large turbulent structure, 
while vortices in other parts of the forcing cycle undergo migration to form a thin 
region connecting the large structures (Ho & Nosseir 1981). The passage frequency of 
the resulting coherent structures is equal to the forcing frequency. The phenomenon 
is called ‘collective interaction’. The high spreading rate and the large drop in the 
passage frequency are the two characteristics associated with the phenomenon. 
Collective interaction is a vortex motion governed by nonlinear secondary instability, 
and was found to be important in many other forced shear layers. Ho & Nosseir (1981) 
studied an impinging jet with self-sustained oscillations. They found that the collec- 
tive interaction was a crucial link in the feedback loop. As a result of the collective 
interaction, the shear layer contains a single dominant frequency which is  an essential 
characteristic of Jlows with self-sustained oscillations. Wygnanski, Oster & Fiedler 
(1979) forced a mixing layer with a flap a t  the trailing edge of the splitter plate; the 
forcing frequency was about one order of magnitude lower than the most-probable 
passage frequency. The shear layer was observed to have a large spreading rate, and 
the concept of collective interaction which we introduced here can explain their 
results. McAlister & Carr (1978) used high-speed cine films to visualize the flow around 
a pitching airfoil. An unsteady shear layer appeared above the upper surface, and 
vortices appeared in the shear layer. The forcing frequency due to the pitching 
motion is much lower than the vortex-passage frequency. Many small vortices were 
observed to merge into a single structure, in agreement with the concept of collective 
interaction. 

I n  the following sections data were measured and reported for mode I, 11, I11 and 
I V  cases. No quantitative results were discussed for the collective-interaction case, 
because of the extremely large spreading rate and the limited depth of the channel. 

3.2. The initial instability and the formation of vortices 

In  this section we will show that the evolution of the various types of vortex merging 
is dictated by the initial forcing condition and the instability of the mixing layer. 
This is the reason why even extremely low level forcing can change the mixing layer 
dramatically. 

3.2.1. The most-amplified frequency. Near the origin of a free shear layer, the per- 
turbation level is very low. Many experiments have shown that linear stability theory 
(Michalke 1965) provides good predictions in a jet. For example Breymuth (1966) has 
shown that the most-amplified frequency and the amplification rate agree with the 
theoretical results. The phase speeds of the stability waves were determined experi- 
mentally by Bechert & Pfizenmaier (1975). However, in a mixing layer some modifica- 
tions need to be made. Michalke’s results are based on the tanh velocity profile with 
zero velocity on the low-speed side. In  this case the velocity ratio R is unity. Huerre 
(1980) pointed out that the amplification rates a t  different velocity ratios can be very 
different owing to the advection effect. Monkewitz & Huerre (1982) performed the 
stability calculation for various velocity ratios. They found that the most-amplified 
frequency scales approximately with the maximum slope thickness 6 and the average 
speed a of the two streams. The normalized most-amplified frequencies are approxi- 
mately constant for all velocity ratios. The peak amplification rate increases almost 
linearly with increasing R. In addition to the effect of the velocity ratio, the mixing 



Subharmonics and vortex merging in mixing layers 453 

FIGURE 9. Initial development of the mixing layer: 0, z = 0.16 cm; 
A, 0.80 cm; 0 ,  1.43 om. 

layer has another complication; the mean-velocity profile is not well approximated 
by a tanh profile near the origin. Boundary layers emerge from either side of the 
splitter plate and form a wake. The development of the mean-velocity profiles is 
shown in figure 9. Miksad (1972) showed that the presence of the wake did not change 
the most-amplified frequency, and only affected the amplification rate in the low- 
frequency region. The most-amplified frequency determines the passage frequency 
of the coherent structures that govern the dynamics of the mixing layer. In  other 
words, the presence of the wake does not significantly affect the dynamics of the 
mixing layer. However, Miksad’s result was based on a parallel-flow calculation with 
a non-evolving velocity profile. 

Two experiments in the unforced mixing layer were performed to obtain a better 
understanding of the effect of the wake. In  the first one, the speeds of the two streams 
were kept constant, u1 = 9.5 cm/s and u2 = 5.0 cm/s (R = 0.31), so that the thick- 
ness of the high-speed side boundary layer was held constant. The thickness of the 
low-speed-side boundary layer was varied by installing or removing the screen near 
the trailing edge. The thickness ratio at  the low-speed side between the two cases 
was about 2.6. No appreciable change in the most-probable passage frequency was 
detected. In  the other test, the mean-velocity difference AU = Ul-  U, was kept the 
same, but the velocity ratio R was varied. The most probable passage frequency fm 

was found to be scaled to the initial momentum thickness 8, of the boundary layer on 
the high-speed side and the average velocity U (figure 10). If the summation of the 
boundary thicknesses 3; is used, the normalized frequencies are far from a constant for 
different velocity ratios (figure 10). Hence the boundary layer on the high-speed side 
appears to characterize the most-amplified frequency. The boundary layer on the 
low-speed side does not play an active role. This might be because the high-speed side 
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shear contains most of the vorticity. Obviously this scaling will not be true for a wake, 
R = 0. However, this method still works for R = 0.2, which is the smallest velocity 
ratio tested in the present experiment. Furthermore, the normalized most-probable 
passage frequency (figure 10) was within a few per cent of the calculated most- 
amplified frequency fo, based on the tanh profile or the Blasius profile, i.e. fo N fm. 

The two tests suggest that the length scale in the initial region of the mixing layer 
should be the thickness of the boundary layer on the high-speed side. The velocity 
scale is the average speed of the two streams. 

3.2.2. Selection of the response frequency. In  $3.1.1, it was pointed out that the 
vortices are forming at  the response frequency and that several frequency stages can 
be distinguished. Inside the mixing layer, the level near the response frequency 
measured by a hot-film probe already dominates the forcing amplitude near the 
beginning of the mixing layer. The selection of the response frequency by the mixing 
layer is examined here. 

An example of the spectrum outside the mixing layer in mode I1 forcing is shown in 
figure 11. The forcing level at  the forcing frequency is higher than that of its har- 
monics, and all of them are barely above the background noise. Inside the mixing 
layer, the spectrum contains clear sharp peaks both a t  the forcing frequency and at  
the response frequency. The r.m.s. values of the streamwise velocity fluctuations u( f )  
a t  the forcing frequency and the response frequency are calculated from the spectrum, 
and the distributions across the shear layer are plotted in figure 12. u'(f)  is the nor- 
malized value of u ( f )  (u ' ( f )  = u( f ) /a) .  Outside the mixing layer, the forcing level 
on the high-speed side is about one order of magnitude higher than the level on the 
low-speed side, although the velocity perturbation levels are the same in both com- 
partments at the inlet of the stagnation chamber. The forcing level on the low-speed 
side is heavily damped by the extra screen installed near the trailing edge of the 
splitter plate. The normalized velocity fluctuations u;( f )  at  the high-speed side are 
defined as the forcing levels, and are noted in the figures of different test cases. In 
both mean streams, the level at  the forcing frequency is much higher than the level 
at  the response frequency. Inside the mixing layer, the level at  the response frequency 
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FIGURE 12. The profile of u'(f) across the mixing layer; mode 11, ff/f, = 0.42, z = 0.16 em. 
-O-, 2.15 HZ = ff;  -A-, 4.30 HZ = fr. 

becomes higher than that a t  the forcing frequency. The result is the same between the 
first measuring station ( x  = 1.6 mm) and the location of the first merging. When the 
mixing layer is forced in modes 11,111, IV, the forcing frequency is rather lower than 
the most-amplified frequency, one of the harmonics however is closer to fo and has a 
higher amplification rate. This specific harmonic amplifies faster and becomes the 
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FIGURE 13. The mode diagram. 

dominating response frequency in the mixing layer, as shown in figure 12. Further 
downstream, the vortices evolve from the instability waves and form a t  the response 
frequency. 

3.3. Subharmonic and vortex merging 

3.3.1. The mode diagram. The relationships among the forcing frequency, the res- 
ponse frequency and the most-amplified frequency having been clarified, another 
presentation of the data in figure 2 provides the clue to an understanding of the 
multiple-vortex-merging phenomenon. In figure 13, the ordinate is the ratio of the 
response frequency to the forcing frequency and the abscissa is the forcing frequency 
normalized by the most amplified frequency. On the diagmal line, the response 
frequency equals the most-amplified frequency. Several features pertinent to the 
forced mixing layer are revealed in this figure. One of the most important charac- 
teristics is that the forcing frequency is related to the response frequency through the 
following equation : 

I 
f f  = , f r ,  

where M is the mode index and M = 1 , 2 ,  3 , 4  for modes = I, 11,111, IV. Therefore the 
forcing frequency is the Mth subharmonic of the response frequency a t  which the 
vortices form initially in the mixing layer. The integer M is selected by the mixing 
layer, as described in 53.2 .2 .  This is demonstrated by the fact that  all the data are 
close to the diagonal line where high amplification rates prevail. As the forcing fre- 
quency is reduced, the response frequency moves away from the diagonal line, and 
then switches to a higher mode to stay close to this line, thereby leading to the stages 
shown on the figure. With the help of (l), the mechanism of the spectacular multiple- 
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FIGURE 14. Sketch of the multiple-vortex merging. 

vortex merging can be explained. In  the forced mixing layer, the vortices form a t  a 
constant response frequency. A small amount of energy at  the forcing frequency, 
which is exactly the Mth subharmonic of the response frequency, is fed into the mixing 
layer and amplifies downstream owing to  the instability. All the M vortices will then 
be displaced to different lateral locations according to  the individual phase differences 
between the vortices and the subharmonic (figure 14). Owing to the lateral velocity 
gradient the vortices will acquire different speeds until M vortices will finally merge 
into a single structure by kinematic induction. The presence of both fundamental and 
subharmonic is important for vortex merging. If only subharmonic appears, large 
vortices will form and no vortex merging occurs (Riley & Metcalfe 1980). In the case 
of mode I, the initial instability wave is a t  the forcing frequency that is close to the 
most-amplified frequency. The subharmonic component is suppressed to an extremely 
low level when compared with the unforced case because the period and the intensity 
of the vortices are held constant. The merging is then delayed considerably. Hence one 
must conclude that the subharmonic of the vortex-passage frequency is an essential 
element leading to vortex merging. 

Another interesting feature in the mode diagram (figure 13) is that the response 
frequencies are close to the most-amplified frequency, but stay below f,,, except in 
mode I. The diagonal line in figure 13 is the approximate boundary between the 
dispersive and non-dispersive regions. This observation reveals that the response 
frequencies are always dispersive, or at  most equal to the most-amplified frequency. 
However, no plausible explanation is available a t  present. 

3.3.2. The  subharmonic instability. It has been pointed out in $3.3.1.  that vortex 
merging is formed by the mutual induction of the vortices displaced laterally by 
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A-A, 2.15 HZ = ff; 0-0, 4.30 HZ = f,; 0-0, 6.45 Hz. 

the amplifying subharmonic. A study of the amplification of the subharmonic 
waves in the mixing layer can clarify many important concepts about vortex merging. 
Furthermore, although vortex merging has been visually examined; the quantitative 
description of the phenomenon is somewhat limited (Petersen 1978). In  this section, 
several important concepts are introduced. 

The narrow-band velocity fluctuation level u(f) was measured across the mixing 
layer (an example is shown in figure 12) a t  many streamwise stations. The normalized 
values of u ( f )  were integrated across the mixing layer, and plotted as a function of 
the streamwise distance. The streamwise energy content is defined as 

Measurements of E( f) in a mode I1 mixing layer are shown in figure 15. The energy 
content a t  the response frequency reaches a maximum level a t  x / A ,  = 4. From the 
visualization studies, the instability wave rolls up into a vortex close to the same 
location. The lateral displacement of the vortices becomes visible near ./Ao = 6, 
where the streamwise energy contents of the response frequency and of the forcing 
frequency reach the same level. The spreading rate of the mixing layer increases con- 
siderably (figure 2 5 ) .  Several special features occur two wavelengths further down- 
stream a t  x/A0 = 8 (figure 16): 
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FIGURE 16. The definition of merging location. 

(i) the two vortices become laterally aligned from visualization; 
(ii) the spreading of the mixing layer stops from this point on until the next merging 

occurs (figure 25); 
(iii) the streamwise energy of the forcing frequency, i.e. the subharmonic, is maxi- 

mum here. 
It is rather subjective to define the exact location of vortex merging, because the 

merging process is actually accomplished within several wavelengths. However, the 
three features appearing at  x/A, = 8 seem to characterize the process. Hence we 
define the position where the subharmonic saturates as the vortex-merging location. 
I n  other words, the vortex merging can be viewed as the subharmonic instability. 
When merging occurs, small-scale fluctuations appear, as shown by the dye traces; 
this can also be inferred from the increased level of the higher harmonics in the 
spectrum (figure 17) .  These small-scale fluctuatians could be produced by the large 
strain rate that occurs during merging. 

In  the mode I case (figure 18), the higher harmonics also increase when merging 
resumes. It should be noticed that not only is the subharmonic suppressed, but the 
amplification rate is reduced as well in the non-merging range, as predicted by Riley & 
Metcalfe (1980). This observation further confirms that the subharmonic is a necessary 
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catalyst for vortex merging (figure 14). Similarly to the mode IS case, the location of 
the saturation of the second subharmonic in the mode I11 case (figure 19) also corres- 
ponds to the location where three vortices merge. 

In the visualization experiments, it is evident that vortex merging, e.g. modes 11, 
111, IV, is different from the collective interaction due to the substantial difference in 
required forcing levels. It is expected that the energy content of the forcing frequency 
will saturate at  the position where the vortices coalesce. In  the case of collective 
interaction, the forcing frequency is very low, so the amplification rate is small. With 
the low forcing level, it takes a long distance for the energy to reach saturation. 
Usually, before that can happen, some higher-frequency waves (but which are still 
subharmonics of the response frequency) will amplify faster and reach the saturation 
level. Thus a relatively small number of vortices coalesce, such that the mixing 
layer behaves like that of an unforced one. If the forcing level starts from a high 
value (in the present experiment ti’( f) 21 2 %), the energy content a t  the low forcing 
frequency can reach the maximum level within a short distance. Then the mixing 
layer can bypass vortex merging and sustain a collective interaction. The required 
forcing level for collective interaction should vary with the background noise level 
a t  frequencies higher than that a t  the forcing frequency, and therefore depends 
on individual experiment. If the forcing level is extremely high and close to the 
saturating level, the mixing layer can form a large vortex directly. 

3.3.3. The dispersive relation. The amplification of the subharmonic is pertinent to 
the vortex merging. Kelly (1 967) suggested a subharmonic-resonance mechanism by 
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which the subharmonic can increase its energy through nonlinear interaction. The 
transfer of energy becomes pronounced when the phased speed of the subharmonic 
matches the phased speed of the fundamental, i.e. the subharmonic becomes non- 
dispersive. I n  a jet, Petersen (1978) found experimentally that the vortices will merge 
a t  the location where the subharmonic becomes non-dispersive. 

In  the mixing layer, the dispersive relation was measured a t  two locations (figure 
20). Very near the origin of the mixing layer ( x  = 1.3 cm), the measured dispersion 
curve agrees well with the theoretical prediction (Monkewitz & Huerre 1982). I n  a 
short distance downstream (x = 3.8 cm), the first subharmonic of the most-amplified 
frequency fo propagates a t  the same speed as fo. Hence the subharmonic became non- 
dispersive near x = 3-8  cm. The subharmonic takes a fairly long distance to amplify, 
and reaches the peak at  x = 15 cm, where the vortices become vertically aligned. In  
other words, the non-dispersion of the subharmonic and the vortex merging do not occur 
at the same location in a mixing layer. In  a jet, the non-dispersion of the subharmonic, 
however, is an approximation made to identify the merging location. The reason is 
that the maximum amplification rates of stability waves are much higher in a jet than 
that in a mixing layer with small velocity ratios. Therefore the locations where the 
subharmonic becomes non-dispersive, and where it becomes saturated are rather close 
in a jet. 

3.3.4. The feedback mechanism. I n  a mixing layer, Dimotakis & Brown (1976) 
observed the existence of a long correlation time which could not be scaled with any 
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local flow properties. They proposed that the upstream flow is influenced by the 
perturbation from downstream through a feedback mechanism. Laufer & Monkewitz 
(1 980) found a low-frequency modulation on the instability wave near the nozzle of a 
jet. The modulation frequency is about equal to the vortex-passage frequency a t  the 
end of the potential core. They suggested that the low-frequency modulation is due 
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to upstream-propagating flow perturbations produced by the downstream vortex 
merging and that a feedback loop exists in a free jet, similar to that found in an 
impinging jet (Ho & Nosseir 1981). They used the same equation developed by Ho & 
Noaseir to interpret the data in a forced jet (Kibens 1980). The results were found to  
be satisfactory. 

The feedback equation states that the number of waves in a feedback loop should 
be an integer 

where xM is the distance from the trailing edge to the ith merging, and 

x, = x,+z,+x,+ ... . 
xi is the distance between the (i - 1)th and the ith merging. hi is the wavelength after 
the ith merging, and ha is the wavelength of the upstream-propagating acoustic 
waves. N is an integer. The equation is derived from the fact that the phase difference 
between the downstream-travelling waves and the upstream-propagating waves at  
any point in the feedback loop has to  be 2Nn, where N is an integer, simply because 
both wave trains with the same frequency must have the same phase at  the same 
location. One assumption made in deriving ( 2 )  is that the downstream phase speed 
is constant along the paths; otherwise the first term in (2) should be modified. 

In the water-channel test, the acoustic wavelength is much larger than hi, and the 
phase speeds are almost constant from the beginning of the mixing layer (figure 20). 
Equation (2) can be approximated as 

(3) 

For the case of the first merging, 

where M is the mode index in (1). This formula explains why the location of merging 
moves upstream with increasing response frequency in the same mode of forcing, as 
observed in the visualization experiments (figures 4 and 5). Furthermore, the position 
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FIGURE 22. The amplification rates; R = 0.31: --, Monkewitz & Huerre (1982). 

of vortex merging, normalized to the wavelength A, of the response frequency, is 
found to be constant (figure 21). This result certainly supports the feedback concept 
(equation (3)).  

The feedback idea implies that  the location of vortex merging is determined 
globally t,hrough (2). The ideas of non-dispersion and saturation of subharmonic 
depend on local conditions only. However, these two mechanisms are not mutually 
exclusive. The local stability provides a band of possible frequencies. The global feedback 
mechanism fine-tunes the mixing layer into a specijc frequency according to the feedback 
equation. 

3.3.5. The amplijcation rate and the merging distance. For a mixing layer with 
R = 0.31, the amplification rates a t  different frequencies were measured (figure 2 2 ) ,  
and compared favourably with the theoretical result (Monkewitz & Huerre 1982). 
The stability analysis is an inviscid calculation. I n  the present case, the Reynolds 
number Re = 8, o / v ,  based upon the initial momentum thickness, is only about 31. 
It is amazing to notice the good agreement. According to the analysis, the maximum 
amplification rate of instability waves is approximately a linear function of the 
velocity ratio. The measured value of the maximum amplification rate at R = 0.31 
is about a quarter of the maximum amplification rate for a jet, R = 1.0. 

Equation (4) also provides the location of the first merging, as well as the locations 
of successive mergings downstream: 

x1 = x2 = NMA,, 

= 2xi = NMih, (i 2 2 ) .  

The value of AT in (6) represents the number of subharmonic wavelengths required to 
accomplish a vortex merging. I n  the present case, the value of N is 4. For a jet (Gut- 
mark & Ho 1980), the value of N is 2. It appears that the values of N are inversely 
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proportional to the maximum amplification rates a t  different velocity ratios. Since 
vortex merging is observed to occur a t  the climax location of the subharmonic, it is 
reasonable to expect that the vortices take a longer distance to merge for flow with 
smaller amplification rate. Consequently, the mixing layer with smaller velocity 
ratio spreads more slowly (Ho 1981). 

3.4. The development of the forced mixing layer 

3.4.1. T h e  mean-velocity profiles. In a forced mixing layer, the shapes of the mean- 
velocity profiles change with downstream distance. Right after the trailing edge of the 
splitter plate, two boundary layers merge into a wake flow (figure 9). The wake 
gradually evolves into a flow with an approximately tanh profile (figure 23a,  0 ) .  
Further downstream vortices start to merge, the velocity profile shows deviations 
from the tanh profile due to the vertical movement of the vortices (figure 23c).  After 
vortex merging, the velocity profile becomes a tanh profile again (figure 2 3 d ) .  The 
same type of profile occurs in the far-downstream region where random merging takes 
place (figure 23e).  I n  these figures, the vertical axes are normalized as ( y -  a ) / @ ,  where 
a is the position where the velocity equals the average velocity 0. 

3.4.2. T h e  spread of the mixing layer. The momentum thickness 8 is used as a measure 
of the spread. Before the disappearance of the wake, the momentum thickness of the 
shear layer on the high-speed side is used. The growth of the forced mixing layer is 
very different from that of an unforced mixing layer (figure 24).  The unforced mixing 
layer first has a parabolic spread due to laminar growth, which is follon-ed by a linear 
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spread due to the random vortex merging in time. The vortex-passage frequency is 
constant before vortex merging. When vortex merging begins, the frequency decreases 
linearly with distance. I n  a forced mixing layer there are regions with stepwise growth 
due to the localized merging process. An example of 5t mode I1 mixing layer is shown 
in figure 25: the instability wave rolls up into vortices until x/h, = 6 is reached. 
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Beyond this station two vortices start to merge into a single vortical structure. The 
spreading rate d8/dx is very large in this region. Near x/Ao = 8, the merging is com- 
pleted, and the mixing layer then keeps a constant thickness €or an interval. The 
thickness ratio before and after merging is equal to two. Downstream of x / h o  = 12, 
merging is not localized any more and the spread becomes linear. In the same mode, 
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it has been observed that the thickness becomes smaller and the merging location 
moves more upstream (figures 4 and 5 ) ,  if the forcing frequency is increased. The 
visualized results are confirmed by measurement in figure 25. I n  a mode IV  mixing 
layer (figure 26) the first merging is completed also a t  " / A ,  = 8. The difference is the 
presence of two stages of vortex merging : because the forcing frequency is the second 
subharmonic of the response frequency, four vortices will ultimately merge together 
a t  ./Ao = 16. In  mode I (figure 27), the vortex merging is suppressed until ./Ao = 8, 
and the spreading eventually becomes linear. The asymptotic spreading rates of 
forced shear layers with different modes have approximately the same value as in the 
unforced mixing layer. However, the thickness of the mixing layer is different for 
various modes a t  the same downstream location. The local thickness and the virtual 
origin depend on the initial response frequency and the number of mergings already 
experienced. This is evidence of the long-lasting effect of initial conditions. The 
importance of the initial condition has been demonstrated by Oster et al. (1977), 
who used an oscillating flap a t  the trailing edge of the splitter plate and greatly 
modified the downstream development of the mixing layer. It is also interesting to 
note that the thickness of the unforced mixing layer close to the leading edge is thinner 
than that of the forced mixing layer in all modes (figures 23-27). The vortex-passage 
frequency in an unforced mixing layer corresponds to the most-amplified frequency, 
which is higher than, or a t  most equal to, the response frequency in a forced mixing 
layer (figure 13). The unforced mixing layers have a ahortzr instability wavelength 
and a lesser thickness near the origin. 

3.4.3. The level of the velocity jluctuations. Fluctuating-velocity profiles are very 
different for various modes. In mode I, vortices do not merge for a long distance. 
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Within this range, the streamwise velocity fluctuations have a two-peak profile as the 
result of a row of well-aligned vortices (figure 28). In  the figure, u is the broad-band 
velocity fluctuation. Far downstream, the peaks are smeared into a single-peak profile 
where random vortex mergings take place. In a mode I1 mixing layer, before the first 
merging, the fluctuating-velocity profile has two peaks (figure 29). At ./Ao = 8, 
vortices merge, and two vortices are nearly laterally aligned, so that the profile has 
three peaks. Further downstream, the two vortices form a large vortex, and the two- 
peak profile characterizing the velocity fluctuations of a single vortex reappears. 
Finally, the profile has only one peak due to  the random merging. 

In the experiment by Wygnanski et al. (19791, the mixing layer first went through 
collective interaction, so that many small vortices coalesced into a large vortex. This 
large vortex will persist for a long distance until its subharmonic amplifies, and makes 
the large vortex merge again. From this point on, the evolution of the flow is similar 
to the mode I mixing layer of the present experiment. In  both cases the velocity 
ratios are approximately equal, the spread of the mixing layer reaches a plateau a t  
x/h, = 4, and the mixing layer starts to grow again a t  ./A, = 8. The two-peak profile 
of the fluctuating velocity also lasts for a long distance in both experiments. Therefore 
the characteristics of the two experiments are the same in spite of the large differences 
in Reynolds number. This fact illustrates that the general flow properties are deter- 
mined by the behaviour of the coherent structures, which are essentially inviscid 
phenomena. 

3.5. Stability theory and the mizing layer 

It has been noticed €or some time t,hat many properties in a mixing layer can be 
calculated from stability theory. For example, Crow & Champagne (1971) used 
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Mode J f r l f n  (cm) 0 (em) f i0 lO  f*@/ot 
I1 0.43 0.260 15 0.076 0.079 
I1 0.38 0.272 18 0,072 0.079 
I11 0.31 0.329 19 0,071 0.079 
IV  0.24 0.336 23 0.056 0.079 

t Thcoretical neutrally stablc frequency; calculation based on tanh velocity profile (Monlre- 
witz & Hucrre 1982) 

TABLE 1.  Thc nornialized frequcncy at the vortex-merging position 
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FIGURE 30. The subharmonic evolution moclcl (Ho 1981). 

stability analysis to study the preferred mode of an axisymmetric jet. Crighton & 
Gaster (1976) took the divergence of the jet into consideration, and could calculate 
the preferred mode based upon the velocity profile a t  two diameters downstream 
from the nozzle. Tam ( 197 1 ) as well as Merkine & Liu ( I  975) could predict the far-field 
noise from stability analyses. In  the present paper, the evolution of coherent structures 
is observed to have close relationship with the stability analyses. However, it is 
generally accepted that the vortex merging, the preferred mode and the noise genera- 
tion involve highly nonlinear process. It is then a paradox that the properties of 
nonlinear flow can be predicted from linear stability theories. 

This experiment suggested that the subharmonic can be viewed as a catalyst of the 
vortex merging. A further examination of the subharmonic leads to an explanation 
of the abovementioned paradox. I n  the unforced mixing layer, more than two vortices 
are only occasionally involved in a merging. Hence we will limit our discussion t o  an 
examination of this case. At the location where the subharmonic reaches its peak, the 
vortex merging occurs, and the local thickness doubles (figure 25). If the subharmonic 
frequency is norinalizetl with the local momentum thickness a t  its peak and the average 



Subharmonics and vortex merging in mixing layers 47 1 

speed, then the normalized frequency is equal to the neutrally stable frequency based 
upon linear theory (table I) .  Furthermore, the ratio between the neutrally stable 
frequency and the most-amplified frequency is about two (Monkewitz & Huerre 1982). 
Hence, whenever vortex merging occurs, the change of local length scale makes the 
original subharmonic become neutrally stable, and the new subharmonic become the 
most amplified wave (figure 30). 

Based upon this observation, a model termed ' subharmonic evolution ' was proposed 
by Ho (1981). One major assumption made in the model is that the normalized 
amplification rate of the itli subharmonic equals the linear amplification rate: 

Many of the characteristics of the mixing layer in the nonlinear region, e.g. the pre- 
ferred mode, the distance between merges, the spreading rate and the flight effect of 
noise generation, can then be derived from the model (Ho 1981). It becomes clear that 
the linear stability analyses should not be directly applied to the downstream region 
where the nonlinear effect prevails. However, the infinite stages of newly evolved 
subharmonics make the direct use of linear stability analyses appear to work. 

For a mode I1 flow (figure 15), the amplification rate of the subharmonic equals the 
linear amplification rate. However, more experimental data are needed to substantiate 
the assumption. Recently, Pierrehumbert & Windnall ( 1982) studied a subharmonic 
wave superimposed on a row of vortices. They found that the amplification rate is not 
sensitive to the distributicn of the vorticity, and is approximately equal to the linear 
amplification rate. This result provides additional support for the subharmonic 
evolution model. 

a . 8 . z  L z a .  L + 1  8 .  2 + 1 =  (i 2 2).  ( 7 )  

4. Conclusion 
In  the present experiment, a subharmonic forcing technique has demonstrated the 

capability of greatly manipulating the vortex merging. With very low forcing level, 
several vortices can merge simultaneously and dramatically change the spreading 
rate. A large number of vortices can also coalesce together through the collective 
interaction which is different from the ordinary vortex merging. A high forcing level 
is required. 

In  a forced mixing layer, the initial formation of the vortices depends on the stability 
process and the external forcing function. The vortices form at  the response frequency, 
which is one of the harmonics of the forcing frequency, and is close t o  the most- 
amplified frequency. The interaction between the fundamental, the response fre- 
quency, and the Mth subharmonic, the forcing frequency, leads to  the merging of M 
voFtices. The merging is very much delayed if the subharmonic is suppressed by forcing 
the shear layer near its most-amplified frequency. Hence the presence of the sub- 
harmonic is necessary in vortex merging. Furthermore, the subharmonic starts to 
amplify long before the vortices change their lateral position significantly, and begins 
to decay where the vortex merging is completed. Therefore the subharmonic should 
be viewed as the catalyst instead of the product of the vortex merging. 

The locations of vortex merging can be predicted from the feedback equation. The 
distance between mergings is inversely proportional to  the velocity ratio. The 
evolution of the coherent structures in a mixing layer appears to be controlled by 
the globnl feedback ?~echanism, and the locnl stability. 
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I n  the case of merging of two vortices, which is the most common situation in an 
unforced mixing layer, the momentum thickness doubles where vortex merging is 
completed. The change of the local length scale makes the ‘old’ subharmonic evolve 
from amplifying local subharmonic to decaying local fundamental, and a ‘new’ sub- 
harmonic becomes the most amplified wave. From this experimental evidence, a model 
of subharmonic evolution is proposed, and can explain many of the characteristics of 
a mixing layer. Strictly speaking, linear stability theory should not be applied to 
the region where nonlinearity prevails. However, at each stage, the regenerated 
subharmonics grow with the same rate as the linear amplification rate, and the linear 
stability calculation appears to be able to  predict some phenomena produced by non- 
linear mechanisms. 

The authors would like to express their appreciation to Professors J. Laufer, 
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